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Introduction  
Problem statement  
The task was to simulate the two-dimensional heat expansion in a plate. The heat equation is a 

partial differential equation and reads as follows 

 

is the temperature at the point in  time ,  the Laplace operator with respect to Where 

and the constant  is the thermal diffusivity of the medium 1. 

In addition, this expansion should be parallelized on the Super MUC NG in Munich with the help of 

the MPI Library. 

 

Objective of the work  
My intention was to first complete an iterative, sequential implementation in C++ and then 

parallelize it. 

The Gauss-Seidl and Jacobian methods are two ways to solve linear systems of equations. The latter 

is easier to parallelize, and therefore seems to be a good approach here. 

The goal should be to create a parallelization that is faster than a non-parallelized offline single-

process solution optimized for speed. 

 

Solution strategy  
I had already parallelized a matrix multiplication during the course of the semester as part of an 

exercise sheet. Here, my approach was to distribute matrix A line-by-line, evenly across the available 

threads. I wanted to reuse as much of my code implemented there as possible.  

 
1 https://de.wikipedia.org/wiki/W%C3%A4rmeleitungsgleichung (Retrieved 05.06.21) 

https://de.wikipedia.org/wiki/W%C3%A4rmeleitungsgleichung
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Super MUC NG  
Structure  
It is a supercomputer and currently the fifth fastest computer in Europe and 15th in the world 

rankings.2 It consists of 6336 thin compute nodes, each with 48 cores and 96GB of RAM, and 144 

thick compute nodes, each with 48 cores and 768GB of RAM. In total, the Super MUC NG has 311040 

compute cores with 719TB of RAM and achieves a peak performance of 26.9 PetaFlop/s. All nodes 

are equipped with Intel Xeon Skylak processors. The internal interconnect is a fast OmniPath network 

with 100 Gbit/s. 

The computing nodes are bundled in 8 domains, so-called islands. Within an island, the OmniPath 

network topology is a so-called thick tree, which ensures particularly fast communication. Between 

the islands, the OmniPath network is trimmed in speed by a factor of 1 to 4. 3 

In addition, there are 115 compute nodes in the Compute Cloud4, 32 of which are equipped with two 

Nvidia Tesla V100 GPUs each, and one node is a huge compute unit with 6TB of memory and 192 

cores. 

 

Parallelism  
The parallelism is made available to the programmer via the MPI Library. The so-called Message 

Passing Interface is a standard of which there are many implementations. It describes the message 

exchange in parallel computations on distributed computer systems. It specifies a collection of 

operations and their semantics, i.e. a programming interface, but not a concrete protocol and 

implementation. However, the code remains the same for each thread. Rather, there is an MPI call in 

the standard that returns the thread number.5 

By using these MPI calls, all threads execute their, via ifelse check of the thread number, part of the 

code and communicate with each other. 

A node has the capability for actual parallelism using the cores of its processor. The processor itself 

and the operating system take care of the distribution of processes to these cores. The OmniPath 

network of the Super MUC NG, however, makes it possible to communicate between nodes and thus 

between processes of different processors in the same way as with processes within a processor. 

Thus, many more actual (instead of scheduled) parallel processes can be used than would be possible 

on a PC. 

How many nodes and processes (tasks) are used is defined via the job configuration file. Here there 

are the arguments nodes and ntasks.6 It is also important to select the correct partition. The 

maximum and minimum number of cores available for a job depends on this. 7 

  

 
2 https://top500.org/lists/top500/list/2020/11/?page=1 (Retrieved 05.06.21) 
3 https://doku.lrz.de/display/PUBLIC/Hardware+of+SuperMUC-NG (Retrieved 05/06/21) 
4 https://doku.lrz.de/display/PUBLIC/Compute+Cloud+of+SuperMUC-NG (Retrieved 05/06/2021) 
5 https://de.wikipedia.org/wiki/Message_Passing_Interface (Retrieved 05/06/2021) 
6 https://hpc-support.lboro.ac.uk/slurm-nodes-cpus-tasks.html (Retrieved 05/06/2021) 
7 https://doku.lrz.de/display/PUBLIC/Job+Processing+with+SLURM+on+SuperMUC-NG (Retrieved 05/06/2021) 

https://top500.org/lists/top500/list/2020/11/?page=1
https://doku.lrz.de/display/PUBLIC/Hardware+of+SuperMUC-NG
https://doku.lrz.de/display/PUBLIC/Compute+Cloud+of+SuperMUC-NG
https://de.wikipedia.org/wiki/Message_Passing_Interface
https://hpc-support.lboro.ac.uk/slurm-nodes-cpus-tasks.html
https://doku.lrz.de/display/PUBLIC/Job+Processing+with+SLURM+on+SuperMUC-NG
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Cooling system  
The Super MUC NG is water-cooled and avoids the emissions and costs of an air-cooling system. 

Specifically, a hot water-cooling system developed by IBM is used, which cools the cooling water with 

the help of the outside temperature.8 Thus, although the water can reach up to 40° Celsius, this is 

still sufficient to cool the processors to a safe operating temperature. The LRZ expects to save several 

million euros in cooling costs with the help of these systems. 9 

IBM's iDataPlex® Direct Water Cooled dx360 M4 cluster makes all this possible. The heat can then be 

used to heat adjacent rooms. 10 

 

Figure 1 Direct water-cooling technology; Direct heating utilization of waste heat 

Due to the efficient heat transfer to water, cooling elements become smaller and therefore cheaper 

and more resource efficient. 

 
8 https://www.lrz.de/presse/ereignisse/2020-11-25_Strom-sparen-mit-warmem-Wasser-und-Daten/ 
 (Retrieved 06/06/2021) 
9 https://www. lrz.de/services/compute/museum/supermuc/systemdescription/ (Retrieved 06/06/2021) 
10 https://lenovopress.com/sg247629.pdf (page 36; accessed 06.06.2021)  

https://www.lrz.de/presse/ereignisse/2020-11-25_Strom-sparen-mit-warmem-Wasser-und-Daten/
https://www.lrz.de/services/compute/museum/supermuc/systemdescription/
https://lenovopress.com/sg247629.pdf
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Figure 2 Section through an air-cooled system (top) and a water-cooled system (bottom) 

A single server rack can get by with as little as 70 ml to cool all the processors, voltage regulators, 

and Intel Platform Controller Hub mounted on it. 

 

Figure 3 Water circuit of a Direct Water Cooled dx360 M4 server 
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Experiment  
Presentation of the solution  
Program entry and matrix initialization  
In order to solve the heat equation, boundary conditions must apply. I have given, according to the 

specification of the study work, to the left upper and the right lower corner in each case a 

temperature of 1000. Then I filled the edges linearly descending from 1000 to 1000/n. 

Figure 4 Initialization of a 20x20 matrix according to specified boundary conditions 

This initialization is also the start of my code. All 

MPI processes execute it for themselves. 

 

First MPI_Init11 is called to prepare the library for 

further calls and then the "rank" or the number 

of the MPI process is 12determined via 

MPI_Comm_rank and stored in the variable 

"rank". The number of all started MPI processes 

is then still determined with MPI_Comm_size13 

 and stored in the variable "size".  

The dimensions are defined via the parameters 

passed to the program. 

 

A matrix of this size is created at the heap and 

initialized with 0. The corners are then assigned 

1000 and the edges are calculated  

first horizontally and then vertically for the given 

matrix in the same way as in Figure 4. 

 

 

Figure 5 Program entry and matrix initialization 

 
11 https://www.mpich.org/static/docs/v3.2.1/www3/MPI_Init.html (Retrieved 07/07/2021) 
12 https://www.mpich.org/static/docs/v3.3.x/www3/MPI_Comm_rank.html (Retrieved 07/07/2021) 
13 https://www.mpich.org/static/docs/latest/www3/MPI_Comm_size.html (Retrieved 07/07/2021) 

https://www.mpich.org/static/docs/v3.2.1/www3/MPI_Init.html
https://www.mpich.org/static/docs/v3.3.x/www3/MPI_Comm_rank.html
https://www.mpich.org/static/docs/latest/www3/MPI_Comm_size.html
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Finally, "T_old" and "T_new" are created with the same dimensions and content as "T". 

Iterative calculation with the Jacobi method  

 

Figure 6 Main loop, matrix value calculation, interprocess communication and time measurement 

Calculation variables are set here initially. The first variable, "error", holds the largest error of the last 

iteration. It holds one of the two termination conditions for the while loop in line 133. The second, 

"n_iteration", holds the number of iterations that have already gone into the calculation. It forms the 

second termination condition. TOLRANCE and MAX_ITERATIONS are macros that are given the values 

0.0001 and 1000. Especially to perform comparable tests, it was important to set an iteration count 

limit, instead of an error tolerance limit. In comparing different matrix sizes with different numbers 

of processors, all tests ran into the low 1000 iteration limit. Reaching the tolerance limit requires 

significantly more iterations for all matrix sizes tested. 

The variables "c", "delta_s" and "delta_t" are variables for the Jacobi method. 14 

In line 131 the time measurement starts. This measurement was used for all tests. 

Inside the while loop, the nested for loops begin. The first one with the count variable "j". This 

represents the current column of the matrix and starts at 1, because the left column with index 0 is 

 
14 https://www.cosy.sbg.ac.at/events/parnum05/book/horak1.pdf (page 48; accessed 07/22/2021) 

https://www.cosy.sbg.ac.at/events/parnum05/book/horak1.pdf
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fixed. It runs as long as it is smaller than "dimT[1]-1". I.e., it runs up to the second last column, 

because the right column of the matrix may not be changed again. The second for-loop with the 

count variable "i" iterates the rows of the matrix. Here one of the two central characteristics of 

parallelization can be found. Those rows that are calculated depend on the "rank" variable. Thus, of 

it, which number the executing process possesses. The variable "rowsperthread" is declared before 

with the division between number of rows of the matrix and number of available processes. Here it is 

to be assumed at first that this division is always to be accomplished without remainder. So, the start 

index is calculated from the multiplication between "rank" and "rowsperthread". The first process 

number is 0, so process 0 starts at the very first row. This and the last one is protected from change 

with the "continue" in the for loop. The index, which represents the last row to be calculated, is just 

the index of the first calculated row plus "rowsperthread". Afterwards the Jacobi calculation follows: 

 

Figure 7Formula for the Jacobi method (source: footnote 15) 

The matrix "T" describes the part of the new matrix όȟ which is calculated by the process "rank". 

The matrix "T_old" contains the total state of the last iteration, i.e. όȟ. You can see here the special 

difference between the Jacobi and the Gauss-Seidel process: For the calculation of a new matrix cell 

value, only surrounding cell values of the past matrix are necessary. 

Exchange of results between processes: MPI_Allgather  
 

Central to my parallelization solution is the MPI 

function MPI_Allgather15 . This can best be 

understood as an answer to the following problem: 

Each process has unique data. All processes should 

receive the data of all other processes.  

But this is not the problem of the Jacobi 

parallelization. Figure 7 shows that not every 

process needs every line. Mainly processes 

calculate with their  

 

Figure 8 Visualization of MPI_Allgather 16 

 
15 https://www.mpich.org/static/docs/v3.3.x/www3/MPI_Allgather.html (Retrieved 07/22/2021) 
16 https://mpitutorial.com/tutorials/mpi-scatter-gather-and-allgather/ (Retrieved 07/22/2021) 

https://www.mpich.org/static/docs/v3.3.x/www3/MPI_Allgather.html
https://mpitutorial.com/tutorials/mpi-scatter-gather-and-allgather/
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self-determined data from the last iteration. 

Only the first and last row of each process part 

matrix must be sent with the processes that 

calculate the rows before and after said process 

part matrix. Figure 9 illustrates this. Process 2 

needs the upper pink cell from the memory of 

process 1 to calculate the turquoise cell. Thus, 

to fully compute the first blue row, process 2 

needs only the last row from process 1, nothing 

more. Process 1 also does not need any values 

from process 0 at all. 

However, there is no MPI function that 

specifically solves this problem. My first solution therefore used the primitive functions MPI_Send17 

and MPI_Recv18 . However, it is not trivial to coordinate these commands efficiently in time. Before a 

send is made, a process must already be expecting this message with a receive. In addition, an 

implementation with primitive functions involves more lines and is thus error-prone. The solution 

with MPI_Allgather is not optimal, due to the large amount of communications not needed, but it is 

short, simple, clean and handles any synchronization between processes itself. 

The call itself uses the matrices "T" and "T_new". There are three matrices in total: 

1. Matrix "T": Contains the results of the row calculations of process "rank" of the current 

iteration. 

2. Matrix "T_old": Contains the entire matrix state of the last iteration or, in case of the first 

iteration, the initialization state. 

3. Matrix "T_new": Contains the entire matrix state of the current iteration after the 

MPI_Allgather call. 

 

Figure 10 MPI_Allgather call for communication between processes 

The first parameter is the start memory address of the data to be sent. It is calculated here for each 

process by pointer arithmetic. The second parameter is the number of values to be sent. The third 

parameter describes the type of the values. Parameter number four is the memory address where all 

data should be joined. Parameter number five is the number of expected values per process. Each 

process then has the entire matrix with all current values itself in "T_new".  

Since each process owns all current cell values, each process can also calculate the error, without 

further communication via a MPI_Reduce19 for example. In line 165ff. the whole state is copied from 

 
17 https://www.mpich.org/static/docs/latest/www3/MPI_Send.html (Retrieved 23/07/2021) 
18 https://www.mpich.org/static/docs/latest/www3/MPI_Recv.html (Retrieved 23/07/2021) 
19 https://www.mpich.org/static/docs/v3.2.1/www3/MPI_Reduce.html (Retrieved 23/07/2021) 

Figure 9 Visualization of required data for a cell 

https://www.mpich.org/static/docs/latest/www3/MPI_Send.html
https://www.mpich.org/static/docs/latest/www3/MPI_Recv.html
https://www.mpich.org/static/docs/v3.2.1/www3/MPI_Reduce.html
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"T_new" to "T_old", the number of iterations is counted up and the nextiteration is entered or the 

while loop is acknowledged.  

Evaluation  
Tests with different compiler options  
The tests of the program included five matrix sizes, each of which was run with ten processors of 

different sizes. The focus of my evaluation was the difference between the results with the "trace" 

compiler flag, which supplements the program to write trace analyzer data to disk during runtime, 

and those with the "ofast" compiler flag, which optimizes the program for speed. All tests run for 

1000 iterations of the while loop (see Figure 6). All matrices are square, so matrix size n is both the 

number of rows and the number of columns. The runtime t is always measured in seconds. 

As a benchmark I wrote an implementation without the MPI library and compiled it with gcc 9.3.0. 

Also here I used the "ofast" flag. The runtimes are from an Intel Core i5-9600K CPU @ 3.70GHz. 

Matrix size n 512 1024 2048 4096 8192 

Running time 
t [s] 

1,287 10,281 65,592 326,615 1460,012 

 

The goal of MPI parallelization should be to run 1000 iterations faster than this single-processor 

application, starting from a certain number of processors p.  

Trace - Values 

 p=1 p=2 p=4 p=8 p=16 p=32 p=64 p=128 p=256 p=512 

n=512 2,9273 6,2143 4,0691 2,9057 2,5897 2,6612 3,1324 3,4992 3,9295 4,7425 

n=1024 12,164 24,766 21,421 14,719 13,001 12,475 14,132 15,517 15,856 30,00 

n=2048 102,21 208,93 89,768 71,764 58,242 57,551 53,459 61,398 63,244 68,205 

n=4096 456,35 1144,2 664,45 419,32 244,57 232,56 221,76 273,03 257,91 253,27 

n=8192 1880,1 4557,0 2649,9 1700,9 1218,4 1087,4 923,35 1113,0 1156,4 1289,5 

 

Figure 11 Result of a 20x20 matrix with tolerance of 0.001 
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With the "Trace" flag, the MPI implementation could only hold its own from n=2048. It finds its 

fastest executions between 16 and 64 processes. The reason for increasing runtimes after this is the 

large amount of unnecessarily transmitted 

matrix rows and increasing amount of basic 

MPI function calls (e.g., MPI_Send) in 

MPI_Allgather. Larger matrices have their 

fastest executions with more processes 

(64), than smaller matrices, because the 

amount of computation per process 

increases strongly with increasing matrix 

size and only with these higher processor 

numbers the optimal relationship between 

MPI_Allgather and Jacobi computation is 

found. The jump with two processes has to 

do with the fact that with one processor no 

communication between processes must 

be logged and thus no time is lost. 

Compared to the execution of one process on the 

supercomputer, the parallelization is faster when its speedup is less than one. This happened for 

every matrix size except 1024. Here, the logging overhead of interprocess communication was too 

high to give a speedup advantage over a process with parallelization. Test i has a speedup s, for a 

processor count p, like: 

ί
ὸὭάὩ

ὸὭάὩ
 

The efficiency e of a test is calculated as follows: 

Ὡ
ί

ὴ
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12 Logarithmic graph of MPI-trace values 

Figure 13 Speedup of the MPI-trace values 
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With the help of the Intel Trace Analyzer20, analysis data about the execution can be obtained.  

 

 
20 https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/trace-analyzer.html 
(Retrieved 24/07/2021) 

Figure 14 Efficiency of MPI-trace values 

Figure 15 Trace file of the 4096x4096 matrix with 16 processes 

https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/trace-analyzer.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/trace-analyzer.html
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Of particular interest is the time share of the total execution time consumed by MPI functions and 

the time share that the processes had to wait for each other ("Wait at Barrier"). Here ideas for 

runtime optimization can be found. 

As can be seen in Figure 15, the time 

share of MPI functions increases 

with a larger number of processors. 

This is to be expected, since larger 

matrices are exchanged (see chapter 

Exchange of results between 

processes: MPI_Allgather). The 

fraction of time wasted in waiting 

between processes increases with 

the number of processors for most 

matrix sizes. This is to be expected 

since there is a higher probability per 

MPI_Allgather that a process is out 

of synchronization. I attribute the 

almost inverted behavior of the 

matrix size 4096 to a measurement 

error. 

 

 

 

 

 

 

 

 

 

 

Ofast - values 

 p=1 p=2 p=4 p=8 p=16 p=32 p=64 p=128 p=256 p=512 

n=512 2,9092 1,9150 1,4054 1,0593 1,0500 1,5454 1,9371 2,7810 3.4166 3.8355 

n=1024 11,831 8,4897 7,1661 6,9390 6,6986 8,6747 9,1859 13.046 13,264 13,953 

n=2048 103,79 47,610 37,639 32,431 30,434 39,268 37,312 50,663 53,523 61,562 

n=4096 458,83 274,64 192,31 143,93 125,23 156,13 153,52 232,60 219,32 206,29 

n=8192 2778,2 1138,5 810,87 671,08 587,96 673,24 636,53 992,47 1044,3 1146,1 

 

Figure 16Matlab graph of MPI time fraction 

Figure 17Matlab graphic of the Busy Waits 
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Parallelization has beaten the single-processor solution for every matrix size: success! On average, it 

is twice as fast for the ideal number of processors: 

В
ὸὭάὩ

άὭὲὸὭάὩ

υ
ςȟππρτ 

It has always been fastest with 16 

processes. But it would be expected 

that with larger matrix dimensions, 

the number of processors for the 

fastest execution would increase. It 

does here, but it would have needed 

larger matrices to see it in a discrete 

processor scale. On the SuperMUC 

NG, however, these were always 

stopped by a scheduler. I suspect 

they exceeded a memory limit per 

job that I don't know about.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18Logarithmic graph of MPI Fast values 

Figure 19Matlab Visualization of Ofast Speedup 








