OTH Regensburg

A parallel solution of the two -
dimensional heat expansion

Student: Professor:
Markus Heimerl Dr. rer. nat., Dipl. -Inf.
HACKENBERG

24.07.2021

Content

INTRODUGCTION. ...uieiiai it cmmm e e st s e s s s ea s o s e s e s e s ea e ea s ssmmm— e s ennsennnnn 3
Problem StatemMeNt. ... ——————— 3
L@ o] 1o 1)V 0) 1 =0 o RS 3
Y0111 T T I3 £ = L= o | 7SS 3
SUPET MUGC NGttt e ettt ettt mr e e e e et e e e bbbt e e e e e et e e e tane s e e e e e eeees bbb st e eeaeaeeeannaeseeeeaeesnnns 4
RS U2 (1 PP P PP PP 4
L L= 111111 o o PP OTPURPPPTPPP
100 To] 10T IRV =] .4 OO PP PP O PP PPPRPPPPPPN 5
EXPERIMENT ...t oot e s e s e s s mmmm e s s e et s e s e s en s mmmm s nneea s ennern s A
Presentation Of the SOIULION...........iiiiiiiie e e e e e st e e e e e s e sasbanrte e e e e e e s ssnbeeeeeeeeannes 7
Program entry and matrixX iNItialiZation............coooiiiriiiii i 7
Iterative calculation with thdacobmethod..............cuiiiiiii e 8
Exchange of results between processes: MPl_AIGAatReE. ... 9
V=Y [U = 1o PRSP TP PPPPPRPPPP 11
Tests with different COMPIIEr OPLIONS..........uuuieiiiiieiieee e s e e e e e e eaeaeaeeeeeeeeeeenne 11
Automated testing through Bash SCHPLS........uuuuiiiiiiis e e e e e e e e e e e e eeeeaaanns 16
IMPROVEMENT IDEA AND CONCLUSION.......ccooiitiiimcim e e eeee s e eaa 18

Introduction

Problem statement
The task was to simulate theo-dimensionaheat expansinin a plate. The heat equation is a
partial differential equation andeads as follows

8 — —

—u(Z,t) — aAu(z,t) =0,

ot

Where u(Z,t) isthe temperature at the point if¥ time ¢, A the Laplace operator with respect to
Zand the constant > 0 is the thermal diffusivity of the mediurh

In addition, this expansion should be parallelized onS@eMUCNGIn Munich with thehelp of
the MPI Library.

Objective of the work
My intention was to firstompletean iterative,sequentialimplementaton in C+4and then
parallelize it.

The Gaus$eidl and Jacobian methods are two ways to slimear systems of equations. Tlagter
iseasier to parallelizeandtherefore seems to bex goodapproach here.

The goal should be toreatea parallelizationhat isfaster than a norparallelizedoffline single
process solution optimized for speed.

Solution strategy

| had already parallelized a matrix multiplication during the course of the semester as part of an
exercise sheet. Here, my approach was to tste matrix A lineby-line, evenly across the available
threads. | wanted to reuse as much of my code implemented tasrpossible.

I https://de.wikipedia.org/wiki/W%C3%A4rmeleitungsgleichy(Retrieved 05.06.21)

https://de.wikipedia.org/wiki/W%C3%A4rmeleitungsgleichung

Super MUNG

Structure

It is a supercomputer and currently the fifth fastest computer in Europe and 15th in the world
rankings? It consists of 6336 thin compute nodes, each with 48 cores and 96GB of RAM, and 144
thick compute nodes, each with 48 cores and 768GB of RAM. Inttessuper MUC N@as 311040
compute cores with 719TB of RAId achieves a peak performance of 26.9 PetaFl@gdisodes

are equipped with Intel Xeon Skylak processors. The internal interconnect is a fast OmniPath network
with 100 Gbit/s.

The computinghodes are bundled in 8 domains,-salled islands. Within an island, the OmniPath
network topology is a soalledthick tree whichensuregparticularly fast communicatiarBetween
the islands, the OmniPath network is trimmed in speed by a factor of41%to

In addition, there are 115 compute nodes in tB®mpute Clout 32 of which are equipped with two
Nvidia Tesla V100 GPUs each, and one node is a huge compute unit with 6 TB of memory and 192
cores.

Parallelism

The parallelism is made available tetprogrammer via the MPI Library. ThecstledMessage

Passing Interfacis a standard of which there are many implementations. It describes the message
exchange in parallel computations on distributed computer systems. It specifies a collection of
operaions and their semantics, i.e. a programming interface, but not a concrete protocol and
implementation.However, the code remains the same for each thread. Rather, there is an MPI call in
the standard that returns the thread number.

By using these MPalis, all threads execute their, vifalse check ahe thread number, part of the
code and communicate with each other.

A nodehas the capability for actual parallelism using twees ofits processor The processor itself

and the operatingystemtake care of the distribution of processes to these cofBise OmniPath
network ofthe Super MUC NGowever, makes it possible to communicate between nodes and thus
betweenprocesses oflifferent processors in the same way as witlocessesvithin a processor.

Thus, many more actual (insteadswhedulejiparallel processes can be used than would be possible
on a PC.

How many nodes and processes (tasks) are used is defined via the job configuration file. Here there
are the argumentsiodesandntasks® It is also important to select the correct partition. The
maximum and minimum number of cores available for agepends on this’

2 https://top500.0rg/lists/top500/list/2020/11/?page=XRetrieved 05.06.21)

8 https://doku.lrz.de/display/PUBLIC/Hardware+of+SuperMNG(Retrieved 05/06/21)

4 https://doku.lrz.de/display/PUBLIC/Compute+Cloud+of+SuperN@{Retrieved 05/06/2021)

5 https://de.wikipedia.org/wiki/Message Passing_Interfg@etrieved 05/6/2021)

8 https://hpc-support.lboro.ac.uk/slurmodescpustasks.html(Retrieved 05/06/2021)

7 https://doku.lrz.de/display/PUBLIC/Job+Processing+with+SLURM-+on+Supét(Retrieved 05/06/202)1
4

https://top500.org/lists/top500/list/2020/11/?page=1
https://doku.lrz.de/display/PUBLIC/Hardware+of+SuperMUC-NG
https://doku.lrz.de/display/PUBLIC/Compute+Cloud+of+SuperMUC-NG
https://de.wikipedia.org/wiki/Message_Passing_Interface
https://hpc-support.lboro.ac.uk/slurm-nodes-cpus-tasks.html
https://doku.lrz.de/display/PUBLIC/Job+Processing+with+SLURM+on+SuperMUC-NG

Cooling system

TheSuper MUC NS watercooled and avoids the emissions and costs ddiagoolingsystem.
Specifically, a hawater-coolingsystem developed by IBM is used, which cools the cooling water with
the help of the outside temperaturéThus, although the water can reach up to 40° Celsius, this is
still sufficient to cool the processors to a safeeoating temperature. The LRZ expects to save several
million euros in cooling costs with the help of these systeéfms.

IBM'siDataPlex® Direct Water Cooled dx360 M4 clustgtes all this possible. The heat ¢han be
used to heat adjacent room¥

Direct Water Cooled
dx360 M4 server

Water pump

_ Heat
- exchanger

Under-floor heating

Figure 1 Directwater-coolingtechnology; Direct heating utilization of waste heat

Due to the efficient heat transfer to water, cooling elements become smaller and therefore cheaper
and more resource efficient.

8 https://www.Irz.de/presse/ereignisse/20201-25 Stromsparenmit-warmemWassesund-Daten/
(Retrieved 06/06/2021)

9 https://www. Irz.de/services/compute/museum/supermuc/systemdescriptigRietrieved 06/06/2021)

10 https://lenovopress.com/sg247629.pdpage 36; accessed 06.06.2021)

https://www.lrz.de/presse/ereignisse/2020-11-25_Strom-sparen-mit-warmem-Wasser-und-Daten/
https://www.lrz.de/services/compute/museum/supermuc/systemdescription/
https://lenovopress.com/sg247629.pdf

L [-x—x—-x.x-]
Heatsmkfor/ ——

air-cooled
processor -

Heat sink for
water-cooled
processor

cross-section
(red area)

Figure2 Section through an aitooled system (top) and a wateooled system (bottom)

A single server rack can get by with as little as 70 ml to cool all the processors, voltage regulators,
andIntel Platform Controller Humounted on .

¥

- R ——

Figure3 Water circuit of a Direct Water Cooled dx360 M4 server

Experiment

Presentation of the solution
Program entryand matrix initialization

In order to solve the heat equatiobpundary conditionsnust apply. | ha& given, according to the
specification of the study work, to the left upper and the right lower corner in each case a
temperature of 1000. Then | filled the edges linearly descending from 1000 to 1000/n.

10600 958 900 B850 888 750
2] <] 2] 2] 2] e 2] 2] -]
2] <] 2] 2] 2] e 2] 2] -]
2]] 2] 2] 2] 2] 2] <]]
2]] 2] 2] 2] 2] 2] <]]
2]] 2] 2] 2] 2] 2] <]]
2] <] 2] 2] 2] <] 2] <]]
2] <] 2] 2] 2] <] 2] <]]
2] <] 2] 2] 2] <] 2] <]]
2] <] <] 2] 2] <]] <]]
2] <] <] 2] 2] <]] <]]
2] <] <] 2] 2] <]] <]]
2] <] <] 2] 2] <]] <]]
2] <] <] 2] 2] <]] <]]
2] <] <] 2] 2] <]] <]]
2] <] <] 2] 2] <]] <]]
2] <] <] 2] 2] <]] <]]
2] <] <] 2] 2] <]] <]]
2] <] <] 2] 2] <]] <]]

166 156 286 256 36080 350 U466

main(

[dimT [0] *dimT[1]]:
mT[0]: i) {
3 dimT [J++) 1
T[dimT[1] * i + j] = 0.0;

scale =
T[dimT[1] * = : 7
T[dimT[1] * (dimT[0]-1) + (dimT[1]-1)] = scale;

i < dimT[1]+1; i++){
ale/dimT[1] * {

T[dimT[1] *
T[dimT[1] * (dimT[0]-1) + {dimT[1]-1-(i-1))}]

0+ (i-1)] = val;

mT[0]+1; i++)]
ale/dimT[0] * |

T[dimT[1] * ({i-1) + 0] = wval;
T[dimT[1] * (dimT[0]-1-{i-1)) + (dimT[1]-1)] = wal;

Figure5 Program entry and matrix initialization

) ({dimT[1]41)—i) 5

) ({dimT[0]+1)-1) 7

700 650 688 550 580

2]
2]
2]
2]
2]
2]
2]
2]
]
]
]
]
]
]
]
]
]
]

450 500 556 6660 650

450 4ee 358 300 250 200 150 1lee 58
2] 2] e 2] 2] e 2] 2] leo
2] 2] e 2] 2] e 2] 2] 158
2] 2] 2] 2] <] 2] 2] <] 200
2] 2] 2] 2] <] 2] 2] <] 258
2] 2] 2] 2] <] 2] 2] <] 300
2] 2] 2] 2] <] 2] 2] <] 350
0 <] 2] 2] 2] e 2] <] uee
2] 2] 2] 2] <] 2] 2] <] 4se
2] 2] <]] <] <]] <] 500
2] 2] <]] <] <]] <] 558
2] 2] <]] <] <]] <] 668
2] 2] <]] <] <]] <] 6568
2] 2] <]] <] <]] <] 7008
2] 2] <]] <] <]] <] 756
2] 2] <]] <] <]] <] 800
2] 2] <]] <] <]] <] 858
2] 2] <]] <] <]] <] 200
2] 2] <]] <] <]] <] 958

766 756 866 850 968 956 1666

This initialization is also the start of my code. All
MPI processes execuiefor themselves.

FirstMPI_Inittis called to prepare the library for
further calls and then the "rank" or theumber

of the MPI process iédetermined via
MPI_Comm_ranknd stored in the variable
"rank". Thenumber of all started MPI processes
is then still determined wittMPI_Comm_sizé
and stored in the variable "size".

The dimensions are defined via the parameters
passed to the program.

A matrix of this size is created at the heap and
initialized with 0. The corners are then assigned
1000 and the edges are calculated

first horizontallyand then vertically for the given
matrix in the same way as in Figure 4.

I https://www.mpich.org/static/docs/v3.2.1/www3/MPI_Init.ntm(Retrieved 07/07/2021)

2 https://www.mpich.org/static/docs/v3.3.x/www3/MP1_Comm_rank.htifRetrieved 07/07/2021)

13 https://www.mpich.org/static/docs/latest/iwww3/MP1_Comm_size.htr{Retrieved 07/07/2021)

https://www.mpich.org/static/docs/v3.2.1/www3/MPI_Init.html
https://www.mpich.org/static/docs/v3.3.x/www3/MPI_Comm_rank.html
https://www.mpich.org/static/docs/latest/www3/MPI_Comm_size.html

Finally,"T_old' and"T_new are created with the same dimensions and content'&s

lterative calculationvith the Jacobmethod

1.0 / {dimT [
{(delta_s*delta :
starttime = MPI_Wtime () ;
while {er OLERANCE && n iteration <

itd: icout << << n_iteration <<

rthread+ (rowsperthread*rank) ; i++) {

T[dimT[1] * i + j] = T old[dimT[1] * i + j] + ¢ * (delta
{I_c¢ li[ilml‘[l] * (i- J.\ + ‘I] + T_ li[ilmT[l] * \'.1+J.\

*{dimT[1]),
read (dimT[1]), BLE, comm use

C [0]; i++){
7 J < dimT[1]; j++){
dimT[1] * i + j] - T_old[dimT[1] * i + j]}r
¥imum = sub;

EFror = maximum;

(T_old, T _new, dimI[0]*dimT[l]*s

endtime = MPI_Wtime():

Figue 6 Main loop, matrix value calculatiginterprocess communicatiand time measurement

Calculation variables are set here initially. The first varidbleor”, holds the largest error of the last
iteration. It holds one oftie twotermination conditions fothe while loop in line 133The second,
"n_iteration", holds the number of iterations that have already gone into the calculation. It forms the
second termination condition. TOLRANCE and MAX_ITERATIONS are macros that are given the values
0.0001 and 1000. Especially to perform comparable tests, it was tangdo set an iteration count

limit, instead of an error tolerance limit. In comparing different matrix sizes with different numbers

of processors, all tests ran into the low 1000 iteration limit. Reaching the tolerance limit requires
significantly moreterations for all matrix sizes tested.

The variablesc", "delta_g and"delta_t" are variables for thdacobimethod.*
In line 131 the time measurement starts. This measurement was used for all tests.

Inside the while loop, the nested for loops begin. The first one with the count variable "j". This
represents the current column of the matrix and starts at 1, because thedeimn with index 0 is

1 https://www.cosy.sbg.ac.at/events/parnum05/book/horakl.p(fage 48;accessed 07/22/2021)

https://www.cosy.sbg.ac.at/events/parnum05/book/horak1.pdf

fixed. It runs as long as it is smaller than "dim[1]l.e.,it runs up to the second last column,
because the right column of the matrix may not be changed again. The seceodgorith the

count variable "i'iterates the rovs of the matrixHere one of the two central characteristics of
parallelization can be found. Those rows that are calculated depend on the "rank” vafihbsof

it, which number the executing process possesses. The variable "rowsperthread" is deefared b
with the division between number of rows of the matrix and number of available processes. Here it is
to be assumed at first that this division is always to be accomplished without remaBwlére start
index is calculated from the multiplication tweeen "rank" and "rowsperthread". The first process
number is 0, so process 0 starts at the very first row. This and the last prigected from change
with the "continue” in the for loopTheindex whichrepresents thdast row to be calculateds just
the index of the first calculated row plus "rowsperthreadfterwards the Jacobi calculation follows:

k

k+1 k k k k 5
utl =¥ 4 (”;—].; - Ui_qj— 'l”a._j + U5 4 + ”r'__,i—l)

i i.f “(As)E
Figure7Formula for theJacobimethod (source: footnote 15)

The matrix'T" describes thepart of the newmatrix6 ; which is calculated by the process "rank"
The matrix "T_oldtontainsthe total state ofthe last iteration i.e.0 ;. You can sekerethe special

difference between the Jacobi and the Ga&&sdel process: For the calculation of a new maiteik
value, only surrounding cell values of the past matrix are necessary.

Exchange of results between proces$dBI_Allgather

MI:'|_FE|| gath er Central to my parallelization solution is the MPI
functionMPI_Allgathef® . Thiscan best be

= understoodas an answer to théllowing problem
Each process has unigue data. All processes should
receive the data of all other processes.

. [

But this is not the problem of th&acobi
parallelization. Figure 7 shows that not every
process needs every line. Mainhopesses
calculate with their

HOX O,
107 0O
10 O

Figure8 Visualization of MPI_Allgathéf

15 https://www.mpich.org/static/docs/v3.3.x/www3/MPI_Allgather.htnfRetrieved 07/22/2021)
18 https://mpitutorial.com/tutorials/mpi-scattergatherand-allgather/ (Retrieved 0/22/2021)

https://www.mpich.org/static/docs/v3.3.x/www3/MPI_Allgather.html
https://mpitutorial.com/tutorials/mpi-scatter-gather-and-allgather/

selfdetermined data from the last iteration.

Only the first and lastow of each process part W =Prozess 0
matrix must besentwith the processes that W =Prozess 1
calculate the rows before and aftsaidprocess W=Prozess 2

[J=Prozess 3

part matrix.Figure 9 illustrates this. Process 2
needs the upper pink cell from the memory of
process 1 to calculate the turquoise cehus,

to fully compute the first blue row, process 2
needs only the last row from process 1, nothi
more. Process 1 also does not need any valug
from process 0 at all.

Figure9 Visualization of required data for a ¢
However, there is no MPI functidhat

specificallysolves this problem. My first soion therefore used the primitive functiondPI_Sent
andMPI_Rec¥ . However, it is not trivial to coordinate these commands efficiently in time. Before a
send is made, a process must already be expecting this message with a receive. In addition, an
implementation with primitive functions involves more lines and is thusrgprone. The solution

with MPI_Allgatheiis not optimal, due to the large amount of communications not needed, but it is
short, simple, cleamnd handles any synchronization between processes itself.

The calitself uses the matrices "T" and "T_new". Tédnare three matrices itotal:

1. Matrix"T": Contains the results of the row calculations of process "rankieturrent
iteration.

2. Matrix"T_old: Contains the entire matrix state of the last iteration or, in case of the first
iteration, the initializatbn state.

3. Matrix"T_new: Containghe entire matrix state of the current iteratioafter the
MPI_Allgather call

MPI_Rllgather (T+rowsperthread*rank*dimT[1], rowsperthread*(dimT[1]), MPI_DOUBLE,

T new, rowsperthread* (dimT[1]), MPFI_DOUBLE, comm useable threads):

Figurel0 MPI_Allgather call for communication between processes

The first parameter is thstart memory address of the data to be sent. It is calculated here for each
process byointer arithmetic.The second parameter is the number of values to be sent. The third
parameter describes the type of the values. Parametenber four is the memory address where all
data should be joined. Parameter number five is the number of expected values per process. Each
process then has the entire matmith all current valuedtselfin "T_new"

Since each process owns all current ealuesgach process can also calculate the ervathout
further communication via MPI_Reducé for example In line 165ff. the whole state is copied from

7 https://www.mpich.org/static/docs/latest/www3/MPI_Send.htn{Retrieved 23/07/2021)
18 https://www.mpich.org/static/docs/latest/www3/MP1_Recv.htn(Retrieved 23/07/2021)
19 https://www.mpich.org/static/docs/v3.2.1/www3/MPI_Reduce.htr(Retrieved 23/07/2021)

10

https://www.mpich.org/static/docs/latest/www3/MPI_Send.html
https://www.mpich.org/static/docs/latest/www3/MPI_Recv.html
https://www.mpich.org/static/docs/v3.2.1/www3/MPI_Reduce.html

—t =

"T_new" to "T_old", the number of iterations is counted up and the iterdtion is entered or the
while loop is acknowledged.

850 ——-

1080 950 900 B850 880 750 T8 650 600 550 500 U458 U4PE 3568 300 250 200 150 106 58

8 965.
8 868.
350 815.
300 771.
8 726.
8 681.
8 636.
8 592.
.367 735 542.1602 539.469 536.837 534.205 531.572 528.94 526.309 523.677 521.646 518.414 515.783 513.153 510.522 507.891 5605.261 562.63 500

8 547

8 502.
8 457.
8 U13.
8 368.
B 323.
8 278.
8 234.
8 189.
8 144,

263 8 26 815.789 771.852 726.315 681.578 636.8U1 592.164 547.367 502.63 U457.894 413.157 368.42 323.683 278.947 234.21 189.473 144.737 10
526 821.852 781.578 742.164 702.63 663.156 623.682 584.208 5U4.735 585.261 U65.787 426.314 386.84 3U7.367 3087.893 268.042 228.947 189.473 158
789 781.578 7u47.367 713.156 678.945 644.734 610.523 576.312 542.162 5607.891 473.681 U439.471 485.26 371.85 336.8U 302.63 268.42 234.21 200

852 .1e4 713.156 684.208 655.26 626.312 597.364 568.417 539.469 510.522 481.575 452.628 U423.68 394.734 365.787 336.84 307.893 278.947 250
315 782.63 678.945 655.26 631.575 607.89 584.206 560.521 536.837 513.153 489.469 465.785 4u42.161 418.417 394.73d4 371.85 3U7.367 323.683 308
578 .156 644.734 626.312 607.89 589.U469 571.647 552.626 534.205 515.783 U497.363 478.942 U60.521 4U2.101 U23.68 UB5.26 386.84 368.42 350

au1 .682 616.523 597.364 58U.286 571.6047 557.889 544.73 531.572 518.414 565.257 492.699 U78.9U42 U65.785 U52.628 U39.471 426.314 U13.157 uUee
164 584.208 576.312 568.417 560.521 552.626 544.73 536.835 528.94 521.046 513.151 585.257 U497.363 U489.469 U481.575 473.681 U465.787 U57.894 U450

63 585.261 587.89 16.522 513.153 515.783 518.414 521.646 523.677 526.309 528.94 531.572 534.2085 536.837 539.469 542.182 544.735 547.367 558
894 U4p5.787 U73.681 UB1.575 UB9.469 U9T7.363 5685.257 513.151 521.046 528.94 536.835 544.73 552.626 560.521 568.417 576.312 584.208 592.104 600
157 426.314 439.471 452.628 U65.785 U78.942 U492.899 505.257 518.414 531.572 544.73 557.889 571.6047 58U.206 597.364 610.523 623.682 636.8U1 650
42 386.84 UB5.26 U423.68 UU2.101 46@.521 UT8.9U42 63 515.783 534.285 552.626 571.647 589.469 607.89 626.312 644.734 663.156 681.578 760

683 347.367 371.65 394.734 418.417 442,101 465.785 U89.469 513.153 536.837 560.521 584.206 607.89 631.575 655.26 678.945 T702.63 726.315 758
947 367.893 336.80 365.787 394.734 U423 .68 U452.628 UB1.575 510.522 539.U69 568.417 597.364 626.312 655.26 680.208 713.156 742.1e4 771.852 8688
21 268.42 302.63 336.84 371.85 U485.26 439.471 U473.681 5687.891 542.162 576.312 610.523 6UU4.734 678.945 713.156 TU7.367 781.578 815.789 858

473 228.947 268.42 307.893 3U7.367 386.84 U426.314 465.787 565.261 544.735 584.208 623.682 663.156 702.63 742.16d 781.578 821.052 860.526 900
737 189.473 234.21 278.947 323.683 368.42 413.157 U57.894 582.63 547.367 592.164 636.841 681.578 726.315 771.852 815.789 860.526 905.263 958

50 186 1560 200 250 300 350 4B U450 508 550 600 650 700 750 800 8560 980 950 1068

Figurell Result of a 20x20 matrix with tolerance of 0.001
Evaluation

Tests with different compiler options

Thetests ofthe programincluded five matrix sizes, each of which was run wéthprocessors of
different sizes. Théocus of my evaluation wake difference between the results with tHérace'
compiler flag which supplements the program to write trace analyzer data to disk during runtime,
and those with the "ofast" compiler flagvhich optimizes the program for speell tests run for

1000 iterations of the while loop (see Figure 6). All matrices are square, so matrnxisizeh the
number of rows and the number of columns. The runtinealways measured in seconds.

As a lenchmark | wrote an implementation without the MPI library and compiled it with gcc 9.3.0.
Also here | used the "ofast" flag. The runtimes are froninéel Core i59600K CPU @ 3.70GHz

Matrix sizen 512 1024 2048 4096 8192
Running time | 1,287 10,281 65,592 326,615 1460012
t [s]

The goal of MPI parallelization should bewn 1000iterations faster than thisingleprocessor
application,starting from a certain number of processqrs

Trace- Values

p=1 [p=2 |[p=4 |p=8
n=512 | 2,9273| 6,2143| 4,0691| 2,9057
n=1024| 12,164| 24,766| 21,421| 14,719
n=2048| 102,21| 208,93| 89,768| 71,764
n=4096| 456,35| 1144,2| 664,45| 419,32
n=8192| 1880,1| 4557,0| 2649,9| 1700,9

p=128 | p=256 | p=512
3,4992| 3,9295| 4,7425
15,517| 15,856| 30,00
61,398| 63,244| 68,205
273,03| 257,91| 253,27
1113,0| 1156,4| 1289,5

11

With the "Trace" flag, the MPI implementation could only hold its own from n=204i8ds its

fastest executions between 16 and 64 processes. The reason for increasing runtimes after this is the

Laufzeit g Prozessoren (trace)

10*

512x512

1024x1024
2048x2048
4096x4096 |-

103 L

Sekunden
=
o
N
:

8192x8192| | . 1 —

10°

10° 10? 102
Prozessoren

Figurel2 Logarithmic graph of MRtace values

processor count fdike:

10°

large amount of unneessarily transmitted
matrix rows and increasing amount of basic
MPI function callsg.g.,MPI_Senylin
MPI_AllgatherLarger matrices haveir
fastest executionsvith more processes

(64) than smaller matriceyecause the
amount of computation per proces
increases strongly with increasing matrix
size and only with these higher processor
numbers the optimal relationship between
MPI1_Allgatherand Jaobi computation is
found. The jump with two processes has to
do with the fact that with one processor no
communication between processes must
be logged and thus no time is lost.

Compared to the execution of one process on the
supercomputer, the parallelization is faster when its speedup is less tharTbisehappened for
every matrix size except 1024. Hereg logging overhead of interprocess communication was too
high to give a speedup advantage over a process with paralleliza®shi has a speedup s, for a

g

0

The efficiency e of a test is calculated as follows:

i
o o
N

Speedup (trace)

o

Sekunden

512x512

1024x1024
2048x2048
4096x4096
——8192x8192

O 1
102 10!

Prozessoren

103
Figurel3 Speedup of the MRtace values

12

Effizienz (trace)

1.4
512x512
1024x1024
1:52 = —~2048x2048 |
4096x4096
—8192x8192
1 4
G 0.8]
°
{ o}
= |
S
& 0.6 .
0.4 .
0.2 .
0
109 10t 102 103
Prozessoren Figurel4 Efficiency of MPtrace values

With the help of the Intel Trace AnalyZtranalysis data about the execution can be obtained.

B Intel® Trace Analyzer - [4 put/top_archivestrace_debug_comp . 16_micro_tra t.stfl@loginG3
E ons Project Windows Help

Flat Profile

Load Balance Call Tree Call Graph

Performance Issue Duration (%) Duration
Wait at Barrier 4.67% 24393815
MName TSelf TSelf TTotal Tlotal #Calls #Calls TSelf /Call
4 All_Processes

Group Application 40.0749s | 53.4193s | 0 n.a.

Group MPI 13.3443s | 13.3443 s 224] 59.573e-3s

_

Select performance issue to see details.

4 3

Figurel5 Trace file of the 4096x4096 matrix with 16 processes

20 hitps://software.intel.com/content/www/us/en/develop/tools/oneapi/components/trac@nalyzer.html
(Retrieved 24/07/2021)

13

https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/trace-analyzer.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/trace-analyzer.html

Of particular interest is the time share of the total execution time consumed by MPI functions and
the time share that the processes had to wait for each oth@rgit at Barriel). Here ideas for

runtime optimization can be found.

0.5
As can be seen in Figure 1% time 512x512 7
i ; 0.45 | 1024x1024 /o .
sr_\are of MPI functions increases S0t 5048 | /.
with a larger number of processors. 0.4k 4096x4096 e]
8192x8192 S

This is to be expected, since larger
matrices are exchanged (see chapte
Exchange of results between
processes: MPI_Allgatheiihe
fraction of time wasted in waiting
between processes increases with
the number of processors for most
matrix sizes. This is to be expected
since there is a higher probability pe
MPI_Allgathetthat a process is out
of synchronization. | attribute the
almost inverted behavior of the
matrix size 4096 to measurement
error.

%-Anteil

0.35

0.3

0.25

0.2

0.15

0.1y

0.05

Zeitanteil von MPI Funktionen (trace)

1 |

102 103

Prozessoren

Figurel6Matlab graph of MPI time fraction

Zeitanteil von synchronisationsbedingtem Warten (trace)

A \ L
10 - // X /T/ﬁ‘%/’/\“\\ = 1
/’/ /f ji ;\\:////\\
T / //»/ / \\
= - \
< b \
310 2| / o _
/ A
v
)
a
S 512x512
1024x1024
2048x2048
4096x4096
103+ 8192x8192 |
10° in* 102 103
Ofast- values Prozessoren Figurel7Matlab graphic of the Busy Wait
p=1 p=2 p=4 p=8 p=16 | p=32 | p=64 | p=128 | p=256 | p=512
n=512 | 2,9092| 1,9150| 1,4054| 1,0593 1,5454| 1,9371| 2,7810| 3.4166| 3.8355
n=1024| 11,831 8,4897| 7,1661| 6,9390 8,6747| 9,1859| 13.046| 13,264| 13,953
n=2048| 103,79| 47,610| 37,639| 32431 39,268 37,312| 50,663| 53,523| 61,562
n=4096| 458,83| 274,64| 192,31| 143,93 156,13| 153,52| 232,60| 219,32| 206,29
n=8192| 2778,2| 1138,5| 810,87 | 671,08 673,24| 636,53| 992,47 | 1044,3| 1146,1

14

Parallelization has beaten the singleocessor solution for every matrix sizeiccessOn average, it
is twice as fasfor the ideal number oprocessors:

B 0 "k
. Laufzeit g Prozessoren (Ofast) a Qe QQa .
10 : ‘ ¢mmpt
512x512 V)
1024x1024 .
2048x2048 It has always been fastest with 16
4096x4096 .
T3 k -8192x8192 U S NS S | processesBut it would be expected
e e T that with larger matrix dimensions,
c B g s ot the number of processors for the
§ , Ray ' NN o fastest execution would increase. It
10 E .
% does here, but it would have needed
@ larger matrces to see it in a discrete
R processor scale. On the SuperMUC
e e v e L A 1 NG, however, these were always
s stopped by a scheduler. | suspect
e ,/”"‘J . -
e oo they exceeded a memory limit per
100 e ‘ job that | don't know about.
10° 10t 102 103

Prozessoren
Figurel8Logarthmic graph of MPI Fast values

Figurel9Matlab Visualization of Ofast Speedup

15

